

Tetrahedron: Asymmetry 15 (2004) 1719-1727

Tetrahedron: Asymmetry

Reaction of sugar allyltins with aldehydes under high pressure

Sławomir Jarosz, a,* Katarzyna Szewczyk, Anna Gaweł and Roman Luboradzki b

^aInstitute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warszawa, Poland ^bInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warszawa, Poland

Received 17 March 2004; accepted 19 April 2004

Abstract—High-pressure reactions of allyltin derivatives of furanoses with sugar aldehydes affords *threo*-homoallylic alcohols regardless of the configuration (*Z* or *E*) across the double bond of the starting allyltin. Reaction of methyl 2,3-di-*O*-benzyl-5,6,7-trideoxy-7-(tri-*n*-butyl)stannyl-hept-5-(*Z*)-eno-β-D-ribofuranoside 13*Z* with 2,3:4,5-di-*O*-isopropylidene-D-arabinose 6 was highly stereoselective and afforded only one *threo*-homoallylic alcohol 14, while the same process with *E*-organometallic 13*E* furnished both *threo*-alcohols: 14 and 15 in the ratio 36:64. This result does not agree with the widely accepted six-membered (chair) transition state, which predicts the *threo*-isomers for the reaction of the *E*-allyltin and *erythro* for the *Z*-isomers; however, this result may be explained by a twisted six-membered transition state.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Higher carbon sugars are attractive targets with their synthesis gaining considerable interest over the last decade. A number of methods leading to such complicated molecules have been developed. Over the past several years, we have proposed a general methodology for the preparation of higher carbon sugars by coupling of two sugar sub-units. Precursor 3 can be readily obtained from sugar phosphoranes 1, phosphonates 2, or vinyltin derivatives of monosaccharides 4 (Fig. 1).

Other types of higher sugar precursors, homoallylic alcohols flanked at both ends with sugar moieties (e.g., 8 in Fig. 2), have recently been prepared by us via a boron trifluoride catalyzed addition of sugar allyltins to sugar aldehydes (Fig. 2).⁶ Only the catalyst BF₃·OEt₂ was

suitable for such transformation; the pyranose derivatives (e.g., 5) reacted readily with aldehydes providing the products (e.g., 8) in high yields and with very high diastereoselectivities.⁶ The use of other Lewis acids was connected with the decomposition of sugar allyltins; this process can be controlled thus providing useful chiral synthons, *E*-dienoaldehydes (e.g., 7),⁷ as starting materials in stereocontrolled syntheses of carbobicyclic derivatives such as 9⁸ or 10.⁹

However, the furanose allyltin derivatives did not react with the aldehydes in the same way as the pyranoses; in the presence of BF₃·OEt₂ they underwent decomposition prior to the reaction with the aldehyde.⁶ Acid catalysis for the formation of compounds of type **12** should, therefore, be avoided and other conditions have to be evaluated to achieve this transformation (Fig. 3).

Figure 1. Methods for the preparation of higher carbon sugars using Wittig-type and stannyl methodology.

^{*} Corresponding author. Tel.: +48-22-632-32-21; fax: +48-22-632-66-81; e-mail: sljar@icho.edu.pl

Figure 2. Behavior of sugar allytins toward Lewis acids in (a) the absence and (b) the presence of aldehydes.

Figure 3.

2. Results and discussion

2.1. Reaction of geometrical isomers (E and Z) of sugar allyltins with aldehydes under high pressure

The reaction of allylstannanes with aldehydes is usually catalyzed by Lewis acids. ¹⁰ It can be performed successfully at high temperature, ¹¹ high pressure, ¹² or under radical conditions. ¹³ The relative configurations of the products (homoallylic alcohols) in the former two processes $(\Delta t, \Delta p)$ depend on the geometry of the double bond of the starting allyltin. It is, however, independent of the acid catalyzed process.

The first two processes $(\Delta t, \Delta p)$ proceed via a cyclic sixmembered transition state, in which the tin atom coordinates to a carbonyl group. It is evident, therefore, that both geometrical isomers must form different homoallylic alcohols (Fig. 4-I). Reaction of organostannanes with aldehydes catalyzed by a Lewis acid proceeds through a different mechanism. The acidity of the tin atom on the organostannanes is much lower than that of any Lewis acid used, hence the carbonyl group is complexed by a Lewis acid and not tin. The open-chain model leading to the same *erythro*-isomer, regardless of the configuration of starting allyltin, is, therefore, preferred¹⁰ (Fig. 4-II).

We decided to study this process using furanose-derived allyltins: Methyl 2,3-di-*O*-benzyl-5,6,7-trideoxy-7-(tri-*n*-butyl)stannyl-hept-5-(*E*)- and 5-(*Z*)-eno-β-D-ribofuranosides, **13***E*, and **13***Z*, respectively. ¹⁴ According to the models presented in Figure 4, the *Z*-organometallic **13***Z* should afford the *erythro*- and the **13***E* derivative furnish the *threo*-isomers.

The reaction of a readily available mixture of both olefins, 13E/13Z (2:1), with 2,3:4,5-di-O-isopropylidene-

Figure 4. Stereochemical models for the reaction of allyltins with aldehydes under high-pressure I and catalyzed by Lewis acids II.

D-arabinose **6** was conducted under high pressure and elevated temperature for 7 days affording a mixture of two homoallylic alcohols **14** and **15** (ratio: 58:42, overall yield 93%), to which unexpectedly the *threo*-configurations were assigned. This observation raised a question about the mechanism of this process, which according to a widely accepted model (Fig. 4), should lead to stereoisomers with different relative configurations. We performed, therefore a high-pressure reaction of aldehyde **6** with pure geometrical isomers **13Z** and **13E** with the results shown in Scheme 1.

Scheme 1. Reagents and conditions: (i) 13 kbar, 57 °C, CH₂Cl₂, 7 days.

The 13Z-isomer upon reaction with aldehyde 6 afforded only one stereoisomeric *threo*-homoallylic alcohol 14 in 97% yield. In the reaction of the 13E-isomer with 6, the stereoselectivity was much lower with both *threo*-adducts 14 and 15 being formed in a 36:64 ratio (overall yield 91%). Although the *threo*-product(s) was to be expected from high pressure reactions of the E-isomers according to mechanism of this process (Fig. 4-I), it is hard to explain the formation of such a product with the same relative stereochemistry from the Z-isomer under these conditions, unless another mechanism is considered.

2.2. Determination of the configurations of adducts 14 and 15

The configuration of both isomers 14 and 15 was established by X-ray crystallography and chemical correlations. Fortunately, isomer 15 (obtained in the reaction of 13E with aldehyde 6) was crystalline; its structure was determined by the X-ray method as shown in Figure 5.

Having proven the configuration of isomer 15, it was relatively easy to assign the structure of the product 14. The geometry at the C5 center in 14 was easily determined when the stereogenic center at C6 was destroyed. Oxidation of 14 with PCC gave ketone 16, while oxidation of 15 gave the stereoisomer 17, thus proving opposite configurations for both homoallylic alcohols at the C5 atom (Scheme 2).

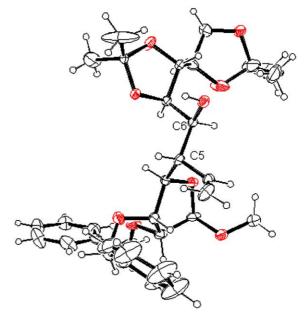


Figure 5. ORTEP drawing of 15.

On the other hand, the absolute configuration of the diols can be conveniently established by CD spectroscopy; the sign of the Cotton effect of the complexes of the diols with molybdenum tetraacetate allows precise determination of the geometry of the stereogenic centers; 15,16 both adducts 14 and 15 were, therefore, converted into the diols 21 and 24 (Scheme 2).

First the free hydroxyl group was blocked as an allyl ether, because of its stability under a wide variety of reaction conditions and the possibility of its selective removal.¹⁷ Next both isopropylidene protecting functions were removed by hydrolysis and the resulting tetraol subjected to periodate cleavage. Reduction of the resulting aldehydes with sodium borohydride afforded alcohols **20** and **23**, respectively. The allyl block was then removed under standard conditions providing diols **21** and **24**. The CD spectra of the complexes of these diols with dimolybdenum tetraacetate shown in Figure 6 clearly indicated at the C6 center an (*S*)-configuration for **24** and an (*R*)-configuration for **21**.¹⁶

3. Stereochemical models for the reaction of sugar allyltins with aldehydes under high pressure

The formation of *threo*-adducts **14** and **15** from *E*-organometallic **13***E* can be explained using the cyclic model for such a reaction as shown in Figure 4. The formation of *threo*-adduct **14** from the *Z*-isomer is more difficult to explain, since according to this cyclic model, the *Z*-organometallics should provide the *erythro*-adducts. The possibility that the *Z*-isomer undergoes isomerization to *13E* prior to reaction with the aldehyde should be also excluded, since **13***E* upon reaction with **6** gives *threo*-adducts with low stereoselectivity (**14**/**15** = 36:64), while selectivity in reaction of **13***Z* is very high (97% of only one stereoisomer **14**). The cyclic

[†] For determination of the configuration of **14** and **15** see Section 2.2.

Scheme 2. Reagents and conditions: (i) PCC, (CH₂Cl)₂, 80 °C (58% for 14 and 60% for 15); (ii) AllBr, NaH, DMF; (iii) (1) H⁺, THF/H₂O; (2) NaIO₄, Et₂O; (3) NaBH₄, MeOH; (iv) Pd/C, *p*-TsOH, MeOH; (iv) Pd/C, *p*-TsOH, MeOH; 00 °C.

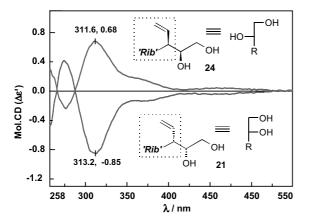


Figure 6. The CD spectra of the complexes of 21 and 24 with $Mo_2(OAc)_4$.

model, widely accepted for such processes does not explain the results obtained in the reaction of 13 with 6 and has to be excluded.

Tetraorganostannanes are very weak Lewis acids, but their acidity can be increased under high pressure. The process studied by us could therefore be regarded as acid catalyzed with the Lewis acid being a part of the reacting molecules (Sug-SnBu₃). In the open-chain, an antiperiplanar model of the acid-catalyzed Yamamoto reaction (25-I; Lewis acid = second molecule of organostannane 13) adducts with the relative *erythro*-configuration is expected. The high-pressure reaction of 13Z with 6, however, afforded the *threo*-product 14 exclusively.

This could result from another open-chain transition state having an antiperiplanar arrangement of the carbonyl and allylstannane groups: **25-II**; this is, however, very unlikely due to severe steric repulsions between the arabinose and ribose units (Fig. 7).

Recently, Nishigaichi and Takuwa demonstrated that the stereochemistry of an acid-catalyzed reaction of

$$A = Bu_3 Sn Sug$$

$$A = Bu_3 S$$

Figure 7. Stereochemical open-chain models in the Yamamoto reaction.

alkoxy-aldehydes with allyltin derivatives is dependent on the nature of the acid. The nonchelating BF₃·OEt₂ predominantly provided the *syn* (or *erythro*) adducts, while TiCl₄ afforded the *anti* (*threo*) homoallylic alcohols as the major products. To explain these results they proposed an alternative open-chain model, in which the carbonyl group and the allylstannane moiety are in synclinal relation. ¹⁸

The exclusive formation of the *threo*-homoallylic alcohols in a high-pressure reaction of isomeric sugar allyltins 13Z and 13E with aldehyde 6 may be explained by a slightly modified model of Nishigaichi and Takuwa. In this model one can postulate, that olefinic (allyltin) and carbonyl fragments of both reacting molecules are synclinal to each other, and this arrangement is stabilized by complexation of the tin atom (present in the molecule of 13) to the carbonyl oxygen atom.[‡] The transition

[‡] Although tetraorganostannanes are very weak Lewis acids (they do not react with aldehydes without activation), their acidity increases under high pressure.

Figure 8. Stereochemical models for the high-pressure reaction of isomeric allylstannanes 13Z and 13E with aldehyde 6.

states for the reaction of the *E*-oraganostannane 13*E* with the aldehyde are represented by the drawings 26a and 26b in Figure 8. Both of them should provide the *threo*-adducts 14 and 15. Analysis of the models indicates, that the steric interaction in these transition states are comparable, and no significant differentiation between them should be expected. In fact, reaction of 13*E* with 6 afforded 14 and 15 in the ratio 36:64.

For the reaction of the 13Z-isomer, another two transition states can be drawn: 27a and 27b, both leading either to 14 or 15. The unfavorable steric and Coulombic repulsions are much lower in 27b than in 27a meaning the former (leading to 14) should be highly favored. This assumption is in full agreement with the experimental observations; only one *threo*-stereoisomeric homoallylic alcohol 14 was formed in a high-pressure reaction of 13Z with 6.

4. Conclusion

The reaction of sugar allyltin derivatives of furanoses can only be successfully achieved under high pressure (13 kbar) and at elevated temperature. This process proceeds not according to the widely accepted cyclic chair transition state, but to a highly distorted model with the synclinal arrangement of the carbonyl and vinyl fragments. According to such model homoallylic alcohols, the relative *threo*-configurations are formed regardless of the geometry across the double bond (*E*

or *Z*) in the allyltin derivative. The reaction of the *Z*-organometallic with an aldehyde was highly stereoselective and furnished only one homoallylic alcohol, while the reaction of the *E*-isomer provided both *threo*-products with low selectivity.

5. Experimental

5.1. General

NMR spectra were recorded with a Bruker AM 500 spectrometer for solutions in CDCl₃ (internal Me₄Si) unless otherwise stated. Most of the resonances were assigned by COSY (1H-1H) and/or HETCOR, and DEPT correlations. The ¹H- and ¹³C-aromatic resonances occurring at typical δ values were omitted for simplicity. The relative configurations of the protons were determined by NOESY experiments. Mass spectra were recorded with an AMD-604 [AMD Intectra GmbH, Germany; [LSIMS (*m*-nitrobenzyl alcohol was used as a matrix to which sodium acetate was added)] mass spectrometers. Optical rotations were measured with a JASCO DIP Digital Polarimeter for chloroform solution ($c \approx 1.5$, unless otherwise stated) at room temperature. CD Spectra were measured between 650 and 230 nm at room temperature with a Jasco J715 spectropolarimeter using DMSO solutions in cells of 0.2 path length (spectral band width 1 nm, sensitivity 10×10^{-6} or $20 \times 10^{-6} \Delta A$ unit/nm). Depending on the S/N-ratio, the λ -scan speed was 0.2 or 0.5 nm/s. For CD measurements, the chiral diol (1–3 mg) was dissolved in a solution of the stock [Mo₂(OAc)₄] complex (6–7 mg) in DMSO (10 mL) so that the molar ratio of the stock complex to the diol was about 1:0.3–1:0.7. As the true concentrations of the individual optically active complexes are not known, apparent $\Delta \varepsilon'$ values are given, calculated from the total ligand concentration and assuming 100% complexation. [Mo₂(OAc)₄] and DMSO (Uvasol) were commercially available from Fluka AG and E. Merck, respectively, and used without further purification.

Column chromatography was performed on silica gel (Merck, 70–230 mesh). Organic solutions were dried over anhydrous magnesium or sodium sulfate.

Methyl 2,3-di-*O*-benzyl-5,6,7-trideoxy-7-(tri-*n*-butyl)-stannyl-hept-5-(*E*)- and 5-(*Z*)-eno-β-D-ribofuranosides (13*E* and 13*Z*, respectively) were prepared according to Ref. 14. 2,3:4,5-Di-*O*-isopropylidene-D-arabinose¹⁹ **6** was obtained by periodate cleavage of 3,4:5,6-di-*O*-isopropylidene-D-glucitol, readily available²⁰ from D-gluconolactone.

5.2. High-pressure reaction of organostannanes 13E and 13Z with aldehyde 6

A solution of organostannane 13 (1 mmol) and aldehyde 6 (0.95 mmol) in methylene chloride (10 mL) was placed in a piston–cylinder type apparatus²¹ and kept under 13 kbar hydrostatic pressure at 57 °C for 7 days. After this time the solvent was evaporated to dryness and the residue chromatographed [first with hexane–diethyl ether, 500:1 (to remove all impurities containing tin) and hexane–ethyl acetate, 6:1] to afford pure isomers.

- Reaction of 13Z afforded 14 in 97% yield.
- Reaction of 13E afforded 14 (33%) and 15 (58%).
- Reaction of a 2:1 mixture 13E/13Z afforded 14 (54%) and 15 (39%). When this process was stopped after ca. 50% conversion (3 days) the proportion of 14/15 was 3:2 (¹H NMR estimation; integration of the signal of OMe at δ : 3.33 and 3.32 ppm for 14 and 15, respectively) with the initial ratio of E:Z-isomeric tins 13 was preserved (δ OMe = 3.34 and 3.32 ppm for the E and E-isomeris), which indicated that no E to E-isomerization took place during the high-pressure reaction.

5.2.1. Methyl 2,3-di-*O*-benzyl-5-deoxy-7,8:9,10-di-*O*-isopropylidene-(5*R*)-vinyl-β-D-*ribo*-D-*manno*-deca-1,4-furanoside 14. $[\alpha]_D = +8.6$; 1H NMR (for numbering see Scheme 2) δ: 5.86 (m, 1H, $J_{1',2a'}$ 9.7 Hz, H-1'), 5.20 (m, 2H, H-2a',H-2b'), 4.95 (d, 1H, $J_{1,2}$ 1.0 Hz, H-1), 4.62 and 4.54 (2 × d, 2 × 1H, $J_{A,B}$ 11.9 Hz, $CH_2C_6H_5$), 4.33(m, 3H, H-4, $CH_2C_6H_5$), 4.17 (dd, 1H, $J_{10a,b}$ 8.5 Hz, $J_{9,10a}$ 6.1 Hz, H-10a), 4.05 (m, 1H, H-9), 3.99 (m, 2H, H-6, H-10b), 3.94 (dd, 1H, $J_{2,3}$ 4.7 Hz, $J_{3,4}$ 5.4 Hz, H-3), 3.85 (dd, 1H, H-2), 3.77 (dd, 1H, $J_{7,8}$ 9.0 Hz, $J_{8,9}$ 7.9 Hz H-8), 3.71 (dd, 1H, $J_{6,7}$ 8.8 Hz, H-7), 3.43 (br s, 1H, O*H*), 3.33 (s, 3H, O*CH*₃), 2.53 (m, 1H, H-5), 1.44, 1.35, 1.33, 1.32

 $\{4\times s,\ 4\times 3H,\ [2\times C(CH_3)]\};\ ^{13}C$ NMR (125 MHz) $\delta:\ 2\times 137.9\ (2\times C_q\ _{benzyl}),\ 133.7\ (C-1'),\ 118.9\ (C-2'),\ 110.2,\ 108.9\ [2\times C(CH_3)],\ 106.5\ (C-1),\ 81.8\ (C-8),\ 81.4\ (C-3),\ 80.4\ (C-4),\ 2\times 80.3\ (C-2,\ C-7),\ 76.2\ (C-9),\ 72.2,\ 72.0\ (2\times CH_2C_6H_5),\ 71.6\ (C-9),\ 67.8\ (C-10),\ 54.9\ (OCH_3),\ 53.2\ (C-5),\ 26.9,\ 26.7,\ 26.3,\ 25.1\ [2\times C(CH_3)].\ Anal.\ Calcd for <math display="inline">C_{33}H_{44}O_9$: C, 67.78; H, 7.58. Found: C, 67.64; H 7.51.

5.2.2. Methyl 2,3-di-*O*-benzyl-5-deoxy-7,8:9,10-di-*O*-isopropylidene-(5S)-vinyl-β-D-ribo-D-gluco-deca-1,4-furano**side 15.** (ORTEP Fig. 6). $[\alpha]_D = +16.6$; ¹H NMR (200 MHz) δ : 5.85 (ddd, 1H, $J_{1',2a'}$ 10.1 Hz, $J_{1',2b'}$ 17.0 Hz H-1'), 5.22 (d, 1H, H-2a') 5.05 (d, 1H, H-2b'), 4.95 (s, 1H, H-1), 4.58 (m, 4H, $2 \times CH_2C_6H_5$), 4.39 (dd, 1H, $J_{3,4}$ 7.1 Hz, $J_{4.5}$ 4.5 Hz, H-4), 4.18-3.72 (m, 7H, H-3, H-6, H-6) 7, H-8, H-9, H-10a, H-10b), 3.77 (d, 1H, J_{2.3} 4.5 Hz, H-2), 3.32 (s, 3H, OCH₃), 2.52 (m, 1H, H-5), 2.47 (br s, 1H, O*H*), 1.39, 21.37, 1.33 $\{4 \times s, 4 \times 3H, [2 \times C(CH_3)]\}; {}^{13}C$ NMR (125 MHz) δ : 2 × 137.7 (2 × C_{q benzyl}), 134.3 (C-1'), 119.7 (C-2'), 109.7, 109.5 [$2 \times C(CH_3)$], 105.9 (C-1), 81.4 (C-4), 80.4 (C-8), 79.2 and 79.0 (C-2, C-3), 78.4 (C-7), 76.9 (C-9), 72.3, 72.2 ($2 \times CH_2C_6H_5$), 71.3 (C-6), 67.5 (C-10), 55.0 (OCH₃), 49.5 (C-5), 27.5, 27.3, 26.6, 25.5 $[2 \times C(CH_3)]$. Anal. Calcd for $C_{33}H_{44}O_9$: C, 67.78; H, 7.58. Found: C 67.80; H 7.49.

5.3. Crystal assignment for 15

Crystallographic data for the structure of 15 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No CCDC 232692. Diffraction data were collected at 100 K by using a Kappa CCD diffractometer with graphite monochromated Mo Kα radiation. Structure was solved by direct methods (SHELXS-97) and refined on F² by full-matrix least-squares method (SHELXL-97). The structure contains two symmetry independent molecules of 15 both having the same absolute configuration and the water molecule bind via hydrogen bonds to the one molecule of 15. Water molecule was refined with occupancy 0.25. Formula: $2C_{33}H_{44}O_9 \cdot 0.25H_2O$, monoclinic, space group $P2_1$, a = 9.0470(2), b = 23.9720(7), c = 14.9150(4) Å, $\beta = 98.646(2)^{\circ}$, $V = 3197.92(15) \text{ Å}^3$, Z = 2, F(000) =1261, $\mu(MoK\alpha) = 0.088 \text{ mm}^{-1}$, $R_1 = 0.0652 [I > 2\sigma(I)]$, $wR^2 = 0.1439$ for all data.

5.4. Oxidation of alcohols 14 and 15

To a solution of alcohol 14 or 15 (0.1 mmol) in ethylene dichloride (2 mL), pyridinum chlorochromate (PCC, 43 mg, 0.2 mmol) was added and the heterogeneous mixture stirred at 80 °C until TLC (hexane—ethyl acetate, 4:1) indicated disappearance of the starting material and the formation of a new less polar product (2 h). The mixture was cooled, diluted with methylene chloride (2 mL), filtered through Celite, and the crude product purified by column chromatography (hexane—ethyl acetate, 4:1).

5.4.1. Methyl 2,3-di-*O*-benzyl-5-deoxy-7,8:9,10-di-*O*-isopropylidene-(5R)-vinyl-6-oxo- β -D-ribo-D-arabino-deca-1, **4-furanoside 16.** Obtained from 14 in 58% yield from 14. $[\alpha]_{\rm D} = -53.1$; ¹H NMR δ : 5.71 (ddd, 1H, $J_{1',2a'}$ 10.0 Hz, $J_{1',2b'}$ 17.1 Hz, H-1'), 5.29 (dd, 1H, H-2b'), 5.21 (dd, 1H, $J_{2a'.2b'}$ 1.4 Hz, H-2a'), 4.87 (dd, 1H, $J_{1,2}$ 1.4 Hz, H-1), 4.62 (dd, 1H, $J_{3,4}$ 6.4 Hz, $J_{4,5}$ 10.0 Hz, H-4), 4.61, 4.54 (2 × d, 2×1 H, $J_{A,B}$ 12.0 Hz, $CH_2C_6H_5$), 4.55 (d, 1H, $J_{7,8}$ 6.0 Hz, H-7), 4.42 (br s, 2H, $CH_2C_6H_5$), 4.30 (dd, 1H, $J_{8,9}$ 6.3 Hz, H-8), 4.19 (ddd, 1H, J_{9.10b} 5.6 Hz, H-9), 4.08 (dd, 1H, J_{9,10a} 6.4 Hz,J_{10a,b} 8.6 Hz, H-10a), 3.92 (dd, 1H, H-10b), 3.89 (dd, 1H, $J_{2,3}$ 4.7 Hz, H-3), 3.82 (dd, 1H, $J_{1',5}$ 9.7 Hz, H-5), 3.78 (dd, 1H, H-2), 3.32 (s, 3H, OCH₃), 1.44, 1.41, 1.37, 1.34 $\{4 \times s, 4 \times 3H, [2 \times C(CH_3)]\}$; ¹³C NMR δ : 206.3 (C=O), 137.7, 137.6 (2 × C_{q benzyl}), 131.7 (C-1'), 120.1 (C-2'), 111.4, 109.8 $[2 \times C(CH_3)]$, 106.6 (C-1')1), 81.9 (C-7), 80.5 (C-3), 80.4 (C-4), 79.5 (C-2), 77.4 (C-8), 76.5 (C-9), 72.2, 72.1 ($2 \times CH_2C_6H_5$), 66.5 (C-10), 59.7 (C-5), 55.6 (OCH₃), 27.2, 26.4, 26.3, 25.2 $[2 \times C(CH_3)]; m/z: 605.2701 [C_{33}H_{42}O_9Na (M+Na^+)]$ requires: 605.2726].

5.4.2. Methyl 2,3-di-*O*-benzyl-5-deoxy-7,8:9,10-di-*O*-isopropylidene-(5S)-vinyl-6-oxo-β-D-ribo-D-arabino-deca-1, **4-furanoside 17.** Obtained from **15** in 60% yield. $[\alpha]_{\rm D} = +32.2$; ¹H NMR δ : 5.86 (ddd, 1H, $J_{1',2a'}$ 10.0 Hz, $J_{1',2b'}$ 17.2 Hz, H-1'), 5.23 (dd, 1H, $J_{2a',2b'}$ 1.5 Hz, H-2a'), 5.03 (dd, 1H, H-2b'), 4.86 (s, 1H, H-1), 4.62 and 4.59 $(2 \times d, 2 \times 1H, J_{A,B} 12.0 \text{ Hz}, CH_2C_6H_5), 4.58 \text{ (dd, 1H, H-}$ 4), 4.56, 4.54 (2 × d, 2 × 1H, $J_{A,B}$ 11.8 Hz, $CH_2C_6H_5$), 4.46 (d, 1H, H-7), 4.19 (dd, 1H, J_{7,8} 6.6 Hz, H-8), 4.14 (ddd, 1H, J_{8,9} 5.8 Hz, H-9), 4.06 (dd, 1H, J_{9,10a} 6.3 Hz, H-10a), 4.00 (dd, 1H, $J_{3,4}$ 7.1 Hz, H-3), 3.91 (dd, 1H, $J_{1',5}$ 9.9 Hz, $J_{4,5}$ 5.2 Hz, H-5), 3.89 (dd, 1H, $J_{10a,10b}$ 8.6 Hz, $J_{9,10b}$ 6.2 Hz, H-10b), 3.78 (dd, 1H, $J_{1,2}$ 0.6 Hz, $J_{2,3}$ 4.6 Hz, H-2), 3.31 (s, 3H, OCH₃), 1.43, 1.37, 1.34, 1.32 $\{4 \times s, 4 \times 3H, [2 \times C(CH_3)]\}; ^{13}C$ NMR δ : 207.2 (C=O), 137.8, 137.7 $(2 \times C_{q \text{ benzyl}})$, 132.3 (C-1'), 120.2 (C-2'), 111.5, 109.8 [2 × $C(CH_3)$], 106.3 (C-1), 82.0 (C-7), 80.2 (C-4), 80.4 (C-4), 79.5 (C-2), 78.8 (C-3), 78.1 (C-8), 76.4 (C-9), 72.2. 72.1 ($2 \times CH_2C_6H_5$), 66.5 (C-10), 55.8 (C-5), 55.3 (OCH₃), 27.2, 26.4, 26.3, 25.2 [$2 \times C(CH_3)$]; m/z: 605.2707 [C₃₃H₄₂O₉Na (M+Na⁺) requires: 605.2726].

5.5. Conversion of adducts 14 and 15 into the diols 21 and 24

5.5.1. Methyl 6-O-allyl-2,3-di-O-benzyl-5-deoxy-7,8:9, 10-di-O-isopropylidene-(5R)-vinyl-β-D-ribo-D-manno-deca-1,4-furanoside 18. To a solution of alcohol 14 (2 mmol) in dry DMF (30 mL), sodium hydride (50% suspension in mineral oil; 3 mmol) was added followed by a catalytic amount of imidazole (20 mg), and the mixture stirred for 30 min. Allyl bromide (0.26 mL, 3.0 mmol) was then added dropwise and stirring prolonged for another 30 min. Excess hydride was decomposed with water (0.5 mL) and the mixture partitioned between water (30 mL) and ether (100 mL). The organic phase was separated, washed with water (15 mL), dried, and concentrated and crude product 18 isolated by column

chromatography (hexane-ethyl acetate, 5:1). Yield: 89%; $[\alpha]_D = -6.0$; ¹H NMR δ : 5.90 (m, 1H, $J_{2'',3a'}$ 10.9 Hz, $J_{2'',3''}$ 17.2 Hz, H-2"\\$), 5.77 (ddd, 1H, $J_{1',2a'}$ 10.3 Hz, $J_{1',2b'}$ 17.2 Hz, $J_{1',5}$ 9.8 Hz, H-1'), 5.27 (m, 1H, $J_{3a'',3b''}$ 1.5 Hz, H-3b"), 5.20 (dd, 1H, $J_{2a',2b'}$ 2.2 Hz, H-2a'), 5.18 (dd, 1H, H-2b'), 5.13 (m, 1H, H-3a"), 4.92 (d, 1H, $J_{1,2}$ 1.2 Hz, H-1), 4.63, 4.55 (2 × d, 2 × 1H, $J_{A,B}$ 12.1 Hz, $CH_2C_6H_5$), 4.42, 4.39 (2 × d, 2 × 1H, $J_{A,B}$ 12.0 Hz, $CH_2C_6H_5$), 4.30 (dd, 1H, $J_{1a'',1b''}$ 12.3 Hz, $J_{1a'',2''}$ 5.2 Hz, H-1a"), 4.22 (m, 3H, H-4, H-8, H-9), 4.13 (dd, 1H, $J_{1b'',2''}$ 6.0 Hz, H-1b"), 4.01 (dd, 1H, $J_{10a,b}$ 8.1 Hz, $J_{9,10a}$ 6.5 Hz, H-10a), 3.95 (dd, 1H, $J_{9,10b}$ 7.2 Hz, H-10b), 3.89 (dd, 1H, J_{3,4} 5.4 Hz, H-3), 3.84 (dd, 1H, J_{5,6} 1.4 Hz, $J_{6.7}$ 9.0 Hz, H-6), 3.83 (dd, 1H, $J_{2.3}$ 4.7 Hz, H-2), 3.73 (dd, 1H, $J_{7,8}$ 6.0 Hz, H-7), 3.33 (s, 3H, OC H_3), 2.46 (m, 1H, H-5), 1.42, 1.37, 1.36, 1.34 $\{4 \times s, 4 \times 3H,$ $[2 \times C(CH_3)]$; ¹³C NMR δ : 137.8, 137.7 (2 × C_{q benzyl}), 134.6 (C-2"), 133.9 (C-1'), 119.1 (C-2'), 116.9 (C-3"), 109.6 and 109.3 [2 \times C(CH₃)], 106.6 (C-1), 81.9 (C-3), 80.2 and 80.0 (C-2, C-4, C-6, C-8), 77.8 (C-7), 76.2 (C-9), 74.0 (C-1"), 72.3 and 72.2 ($2 \times CH_2C_6H_5$), 65.2 (C-10), 55.2 (OCH₃), 53.3 (C-5), 27.7, 27.5, 26.3, 25.4 $[2 \times C(CH_3)]$; ESI (MeOH) m/z: 647.3221 $[C_{36}H_{48}O_9Na]$ $(M+Na^+)$ requires: 647.3191].

5.5.2. Methyl 6-*O*-allyl-2,3-di-*O*-benzyl-5-deoxy-7,8:9, 10-di-*O*-isopropylidene-(5*S*)-vinyl-β-D-*ribo*-D-*gluco*-deca-**1,4-furanoside 19.** Was obtained analogously from **15** in 79% yield. $[\alpha]_D = +12.3$; ¹H NMR δ : 5.89 (m, 2H, H-1', H-2"), 5.21 (m, 1H, $J_{2'',3b''}$ 17.2 Hz, $J_{1'',3b''}$ 3.4 Hz, H-3b"), 5.15 (dd, 1H, $J_{1',2a'}$ 10.3 Hz, $J_{2a',2b'} = -2.1$ Hz, H-2a'), 5.07 (dd, 1H, $J_{1',2b'}$ 17.3 Hz, H-2b'), 5.06 (m, 1H, $J_{2'',3a''}$ 9.0 Hz, H-3a"), 4.89 (d, 1H, J_{1,2} 0.7 Hz, H-1), 4.65, 4.59 $(2 \times d, 2 \times 1H, J_{A,B} 12.0 \text{ Hz}, CH_2C_6H_5), 4.55 \text{ and } 4.43$ $(2 \times d, 2 \times 1H, J_{A,B} 11.8 \text{ Hz}, CH_2C_6H_5), 4.37 \text{ (dd, 1H,}$ $J_{3,4}$ 7.2 Hz, $J_{4,5}$ 4.8 Hz, H-4), 4.15 (dd, 1H, $J_{6,7}$ 4.6 Hz, $J_{7,8}$ 7.0 Hz, H-7), 4.12 (m, 3H, H-1a", H-1b", H-10b), 4.07 (m, 1H, H-9), 3.97 (dd, 1H, $J_{2,3}$ 4.8 Hz, H-3), 3.89 (dd, 1H, $J_{9,10a}$ 6.4 Hz, $J_{10a,b}$ 8.1 Hz, H-10a), 3.85 (dd, 1H, $J_{8,9}$ 7.3 Hz, H-8), 3.79 (dd, 1H, H-2), 3.59 (dd, 1H, $J_{5,6}$ 5.6 Hz, H-6), 3.33 (s, 3H, OC H_3), 2.68 (ddd, 1H, $J_{1'.5}$ 10.1 Hz, H-5), 1.41, 1.37, 1.35, 1.34 $\{4 \times s, 4 \times 3H,$ $[2 \times C(CH_3)]$; ¹³C NMR (125 MHz) δ : 137.9 and 137.8 $(2 \times C_{q \text{ benzyl}})$, 135.3, 135.2 (C-1', C-2"), 119.1 (C-2'), 115.9 (C-3"), 109.6, 109.2 [$2 \times C(CH_3)$], 106.0 (C-1), 81.1 (C-7), 81.0 (C-4), 79.7 (C-2), 79.3 (C-3), 78.9 (C-6), 78.2 (C-8), 77.0 (C-9), 73.3 (C-1"), 72.3 and 72.2 $(2 \times CH_2C_6H_5)$, 67.7 (C-10), 55.1 (OCH₃), 49.5 (C-5), 27.3, 27.2, 26.4, 25.4 [2 × C(CH_3)]; ESI (MeOH) m/z: 647.3213 [C₃₆H₄₈O₉Na (M+Na⁺) requires: 647.3191].

5.5.3. Methyl 6-*O*-allyl-2,3-di-*O*-benzyl-5-deoxy-5-vinyl-β-D-*ribo*-L-*threo*-hept-1,4-furanoside 20. Compound 18 (360 mg, 0.57 mmol) was dissolved in a mixture of THF/water (2:1, 25 mL) containing concentrated sulfuric acid (0.25 mL) and boiled under reflux for 20 h. After cooling to room temperature it was neutralized with triethyl amine. To this solution of a tetraol, diethyl ether

[§] Description bis (") refers to the allylic blocking group.

(10 mL) was added followed by sodium periodate (460 mg, 2.3 mmol), and the mixture stirred vigorously for 30 min at rt. This was diluted with ether (30 mL), and then washed with brine (15 mL) and water (15 mL). Crude aldehyde was reduced with sodium borohydride (40 mg, 0.086 mmol) under standard conditions. Chromatographic purification (hexane–ethyl acetate, 4:1–2:1) afforded alcohol 20 in 70% overall yield (180 mg, 0.4 mmol). $[\alpha]_D = -19.1$; ¹H NMR δ : 5.94 (m, ¹H, H-2"), 5.79 (ddd, 1H, H-1'), 5.27 (m, 1H, $J_{2'',3b''}$ 17.2 Hz, H-3b"), 5.15 (m, 1H, $J_{2'',3a''}$ 10.4 Hz, H-3a"), 5.13 (dd, 1H, $J_{1',2a'}$ 10.0 Hz, $J_{2a',2b'}$ 2.0 Hz, H-2a'), 5.08 (dd, 1H, $J_{1',2b'}$ 17.2 Hz, H-2b'), 4.92 (d, 1H, J_{1,2} 1.3 Hz, H-1), 4.63, 4.55 $(2 \times d, 2 \times 1H, J_{A,B} 12.0 \text{ Hz}, CH_2C_6H_5), 4.93 \text{ (s, 2H, }$ $CH_2C_6H_5$), 4.33 (dd, 1H, $J_{3,4}$ 5.9 Hz, $J_{4,5}$ 10.3 Hz, H-4), 4.19 (m, 1H, $J_{1a'',2''}$ 5.3 Hz, $J_{1a'',3b''}$ 1.7 Hz, H-1a"), 4.14 (m, 1H, $J_{1a'',1b'}$ 12.7 Hz, $J_{1b'',2''}$ 6.0 Hz, $J_{1b'',3a''}$ 1.3 Hz, H-1b"), 3.89 (dd, 1H, J_{2,3} 4.8 Hz, H-3), 3.83 (dd, 1H, H-2), 3.82 (m, 1H, H-6), 3.65 (m, 1H, H-7a), 3.56 (m, 1H, H-7b), 3.34 (s, 3H, OC H_3), 2.16 (ddd, 1H, $J_{5.6}$ 2.9 Hz, $J_{1'.5}$ 10.2 Hz, H-5), 1.83 (m, 1H, O*H*); 13 C NMR δ : 2 × 137.7 $(2 \times C_{q \text{ benzyl}})$, 135.2 (C-2"), 134.6 (C-1'), 118.2 (C-2'), 116.8 (C-3"), 106.7 (C-1), 81.5 (C-3), 80.3 (C-4), 80.1 (C-2), 79.1 (C-6), 72.9 (C-1"), 72.3, 72.1 ($2 \times CH_2C_6H_5$), 64.1 (C-7), 55.2 (OCH₃), 53.9 (C-5); m/z (ESI): 477.2230 $[C_{27}H_{34}O_6Na \quad (M+Na^+) \quad requires: \quad 477.2248]. \quad Anal.$ Calcd for C₂₇H₃₄O₆: C, 71.34; H, 7.53. Found: C, 71.58; H 7.60.

5.5.4. Methyl 6-O-allyl-2,3-di-O-benzyl-5-deoxy-5-vinylβ-D-ribo-D-threo-hept-1,4-furanoside 23. Prepared analogously from **19** in 80% overall yield. $[\alpha]_D = +48.3$; ¹H NMR δ : 5.91 (m, 1H, H-2"), 5.73 (ddd, 1H, H-1'), 5.25 (m, 1H, $J_{2'',3b''}$ 17.2 Hz, $J_{3a'',3b''}$ 1.6 Hz, H-3b"), 5.14 (m, 1H, $J_{2'',3a''}$ 0.3 Hz, H-3a"), 5.13 (dd, 1H, $J_{1',2a'}$ 10.3 Hz, $J_{2a',2b'}$ 2.0 Hz, H-2a'), 4.94 (dd, 1H, $J_{1',2b'}$ 17.2 Hz, H-2b'), 4.83 (s, 1H, H-1), 4.66, 4.59 (2 × d, 2 × 1H, $J_{A,B}$ 12.1 Hz, $CH_2C_6H_5$), 4.56, 4.37 (2 × d, 2 × 1H, $J_{A,B}$ 11.9 Hz, $CH_2C_6H_5$), 4.39 (dd, 1H, $J_{3,4}$ 8.2 Hz, $J_{4,5}$ 3.3 Hz, H-4), 4.12 (m, 1H, $J_{1a'',1b''}$ 14.0 Hz, $J_{1a'',2''}$ 5.5 Hz, H-1a"), 4.02 (m, 1H, $J_{1b'',2''}$ 5.9 Hz, H-1b"), 3.91 (dd, 1H, $J_{2,3}$ 4.6 Hz, H-3), 3.76 (d, 1H, H-2), 3.69 (m, 2H, H-7a, H-7b), 3.31 (s, 3H, OC H_3), 2.51 (ddd, 1H, $J_{5.6}$ 5.3 Hz, $J_{1'.5}$ 9.1 Hz, H-5), 2.24 (m, 1H, OH); 13 C NMR δ : 137.8, 137.7 $(2 \times C_{q \text{ benzyl}})$, 135.1 (C-2"), 134.3 (C-1'), 119.3 (C-3"), 116.8 (C-2'), 106.1 (C-1), 81.0 (C-6), 79.0 (C-2), 79.0 (C-4), 78.9 (C-3), 72.35, 72.3 (2*C*H₂C₆H₅), 71.2 (C-1"), 62.3 (C-7), 55.2 (OCH₃), 48.1 (C-5). m/z (ESI): 477.2243 $[C_{27}H_{34}O_6Na (M+Na^+) \text{ requires: } 477.2248].$

5.5.5. Methyl **2,3-di-***O*-benzyl-**5-deoxy-5-vinyl-**β-**D**-*ribo*-**L**-*threo*-hept-**1,4-furanoside 21.** Allyl ether **20** (0.1 mmol) was dissolved in a mixture of methanol/water (5/0.5 mL), to which Pd/C (50 mg), and *p*-toluenesulfonic acid were added and the mixture heated at 45–50 °C for 2 h. This was then cooled to rt, diluted with methanol (5 mL) and passed through Celite. The filtrate was neutralized with Et₃N, concentrated, and the residue purified by column chromatography (hexane–ethyl acetate 1:1–1:2) to afford diol **21** as an oil in 44% overall yield. [α]_D = +10.1; ¹H NMR δ : 5.82 (ddd, 1H, H-1'),

5.20 (dd, 1H, $J_{1',2a'}$ 10.3 Hz, $J_{2a',2b'}$ 1.9 Hz, H-2a'), 5.15 (dd, 1H, $J_{1',2b'}$ 17.2 Hz, H-2b'), 4.89 (s, 1H, H-1), 4.63, 4.56 (2 × d, 2 × 1H, $J_{A,B}$ 11.9 Hz, $CH_2C_6H_5$), 4.45, 4.41 (2 × d, 2 × 1H, $J_{A,B}$ 11.3 Hz, $CH_2C_6H_5$), 4.28 (dd, 1H, H-4), 3.94 (dd, 1H, $J_{3,4}$ 7.0 Hz, H3), 3.89 (m, 1H, H-6), 3.82 (d, 1H, $J_{2,3}$ 4.6 Hz, H-2), 3.61 (m, 2H, H-7a, H-7b), 3.34 (s, 3H, OC H_3), 2.77 (d, 1H, $J_{6,OH}$ 4.1 Hz, OH), 2.31 (ddd, 1H, $J_{5,6}$ 3.7 Hz, H-5), 2.03 (m, 1H, OH); ¹³C NMR δ : 137.6 and 137.3 (2 × C_q benzyl), 133.8 (C-1'), 119.1 (C-2'), 105.4 (C-1), 81.3 (C-4), 80.1 (C-3), 79.4 (C-2), 72.4 (C-6), 72.35, 72.3 (2 × $CH_2C_6H_5$), 65.1 (C-7), 55.5 (O CH_3), 52.3 (C-5). m/z (ESI): 437.1958 $C_{24}H_{30}O_6Na$ (M+Na⁺) requires: 437.1935].

5.5.6. Methyl 2,3-di-O-benzyl-5-deoxy-5-vinyl-β-D-ribo-**D**-threo-hept-1,4-furanoside 24. Obtained analogously from 23 in 54% overall yield. $[\alpha]_D = +30.5$; ¹H NMR δ : 5.79 (ddd, 1H, H1'), 5.20 (dd, 1H, $J_{1',2a'}$ 0.3 Hz, $J_{2a',2b'}$ $2.0 \,\mathrm{Hz}$, H-2a'), 4.97 (dd, 1H, $J_{1',2b'}$ 17.3 Hz, H-2b'), 4.86 (s, 1H, H-1), 4.66, 4.59 ($2 \times d$, $2 \times 1H$, $J_{A,B}$ 12.0 Hz, $CH_2C_6H_5$), 4.55, 4.38 (2 × d, 2 × 1H, $J_{A,B}$ 11.7 Hz, $CH_2C_6H_5$), 4.37 dd, 1H, $J_{4,5}$ 3.7 Hz, H-4), 3.96 (dd, $1H_{*}J_{3,4}$ 8.5 Hz, H-3), 3.91 (m, 1H, H-6), 3.78 (d, 1H, $J_{2,3}$ 4.5 Hz, H-2), 3.62 (m, 1H, H-7a), 3.55 (ddd, 1H, $J_{6.7b}$ 7.9 Hz, $J_{7a,b}$ 11.9 Hz, $J_{7b,OH}$ 4.0 Hz, H-7b), 3.32 (s, 3H, OCH_3), 2.91 (d, 1H, $J_{6,OH}$ 2.8 Hz, OH), 2.32 (ddd, 1H, $J_{5.6}$ 3.9 Hz, $J_{5.1'}$ 9.9 Hz, H-5), 2.08 (br s, 1H, OH); ¹³C NMR δ : 137.6, 137.4 (2 × C_{q benzyl}), 133.2 (C-1'), 120.0 (C-2'), 106.1 (C-1), 81.6 (C-4), 78.7 and 78.6 (C-2, C-3), 73.4 (C-6), 72.50, and 72.4 ($2 \times CH_2C_6H_5$), 64.4 (C-7), 55.2 (OCH₃), 49.2 (C-5). m/z (ESI): 437.1948 $C_{24}H_{30}O_6Na (M+Na^+)$ requires: 437.1935].

Acknowledgements

This work was supported by Grant 4 T09A 107 23 from the State Committee for Scientific Research, which is gratefully acknowledged.

References and notes

- Gyorgydeak, Z.; Pelyvas, I. Monosaccharide Sugars: Chemical Synthesis by Chain Elongation, Degradation and Epimerization; Academic, 1998, this book covers the literature up to 1997; For more recent papers, see, for example: Marquis, Ch.; Picasso, S.; Vogel, P. Synthesis 1999, 1441; Blackwell, H. E.; O'Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. C.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc 2000, 122, 58; Maria, E. J.; da Silva, A. D.; Fourrey, J.-L. Eur. J. Org. Chem. 2000, 627; Joergensen, M.; Iversen, E. H.; Madsen, R. J. Org. Chem. 2001, 66, 4625; Marco-Contelles, J.; Opazo, E.; Arroyo, N. Tetrahedron 2001, 57, 4729; Gerber-Lemaire, S.; Ainge, S. W.; Glanzmann, C.; Vogel, P.. Helv. Chim. Acta 2002, 85, 417, and references cited therein.
- 2. Jarosz, S. J. Carbohydr. Chem. 2001, 20, 93.
- Jarosz, S.; Mootoo, D. R.; Fraser-Reid, B. Carbohydr. Res. 1986, 147, 59; Jarosz, S. Carbohydr. Res. 1988, 183, 201; Jarosz, S. Carbohydr. Res. 1992, 224, 73;

- Jarosz, S.; Sałński, P.; Mach, M. Tetrahedron 1998, 54, 2583.
- 4. Jarosz, S.; Mach, M. J. Chem. Soc., Perkin Trans. 1 1998, 3943, and references therein.
- Jarosz, S. Carbohydr. Res. 1987, 167, 211; Jarosz, S. Tetrahedron Lett. 1988, 29, 1193; Jarosz, S. J. Carbohydr. Chem. 1993, 12, 1149.
- Jarosz, S.; Szewczyk, K.; Skóra, S.; Ciunik, Z. Tetrahedron: Asymmetry 2001, 12, 1895.
- Kozłowska, E.; Jarosz, S. J. Carbohydr. Chem. 1994, 13, 889.
- Jarosz, S.; Kozłowska, E.; Jeżewski, A. Tetrahedron 1997, 53, 10775; Jarosz, S.; Skóra, S. Tetrahedron: Asymmetry 2000, 11, 1425.
- (a) Jarosz, S. J. Chem. Soc., Perkin Trans. 1 1997, 3579; (b) Jarosz, S.; Skóra, S. Tetrahedron: Asymmetry 2000, 11, 1433.
- Yamamoto, Y.; Yatagi, H.; Ishihara, Y.; Maeda, N.; Maruyama, K. *Tetrahedron* 1984, 40, 2239; Yamamoto, Y. *Acc. Chem. Res.* 1987, 20, 243–249; Yamamoto, Y.; Asao, N. *Chem. Rev.* 1993, 93, 2207; Sumida, Sh.-i.; Ohga, M.; Mitani, J.; Nokami, J. *J. Am. Chem. Soc.* 2000, 122, 1310, and references cited therein.
- 11. Servens, C.; Pereyre, M. J. Organomet. Chem. **1972**, 35, C20–C22.

- 12. Yamamoto, Y.; Maruyama, K.; Matsumoto, K. J. Chem. Soc., Chem. Commun. 1983, 489.
- 13. Keck, G. E.; Enholm, E. J.; Kachensky, D. F. *Tetrahedron Lett.* **1984**, *25*, 1867.
- 14. Jarosz, S.; Szewczyk, K.; Zawisza, A. Tetrahedron: Asymmetry 2003, 14, 1715.
- Frelek, J.; Snatzke, G. Fresenius' Z. Anal. Chem. 1983, 316, 261; Frelek, J.; Geiger, M.; Voelter, W. Curr. Org. Chem. 1999, 3, 145.
- Jarosz, S.; Mach, M.; Frelek, J. J. Carbohydr. Chem. 2000, 19, 693.
- 17. Kocienski, Ph. In *Protecting Groups*; Georg Thieme, 1994; pp 61–68.
- 18. Nishigaichi, Y.; Takuwa, A. Tetrahedron Lett. 2003, 44, 1405.
- 19. Regeglink, H.; de Rouville, E.; Chittenden, G. J. F. Recl. Trav. Chim. Pays-Bas 1987, 106, 461.
- 20. Jarosz, S.; Zamojski, A. J. Carbohydr. Chem. 1993, 12, 1223
- Jurczak, J.; Chmielewski, M.; Filipek, S. Synthesis 1979,
 Jurczak, J.; Gryko, T. D. In Chemistry under Extreme or Non-Classical Conditions'; van Eldik, R., Hubbard, C. D., Eds.; Wiley and Sons, and Spektrum Akademischer, 1997; Chapter 4.